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High Performance Parallel Local Memory Computing at Fermilab 

Presented by Thomas Nash* 

Computing Division 
Fermi National Accelerator Laboratory, Batavia IL 60510 

Introduction 

Both experimental and theoretical approaches to high 
energy physics (HEP) at Fermilab are computer 
technology limited: no one can identify a requirement on 
computing or dam capacity that is independent of cost or 
other realities. Fermilab has been forced, therefore, to 
turn significant attention and resources to finding 
extremely cost effective solutions to its computing using 
whatever technology is available, and in the process has 
become a pioneer in goal-driven computer science, 
integrating commercial solutions at the chip, board, and 
system level 

The most effective HEP computing solutions are 
general purpose parallel systems which take advantage 
of the scientist’s ability and willingness to identify 
explicitly the structure of the problem. Science, almost 
by definition, deals with regular problems which 
intrinsically oft& parallel solution. It is straightforward 
to recognize that a lattice problem maps obviously to a 
grid of processors. Similarly, it is almost intuitive to 
recognize that the independent events resulting from the 
collision of particles in a HEP experiment can be dealt, 
one at a time, to the individual nodes of an event 
oriented parallel farm of computers. This explicit 
parallelism is the disting-uishing feature of the advances 
in computing developed in the HEP context. In recent 
years, most obviously first in the hypercube movement, 
and now in the surge of interest in networked parallel 
workstation “clusters”, explicit parallelism has become a 
recognized force in the computer science attack on the 
problems of parallel computing. 

Early work on parallel processing led directly to the 
two main explicitly parallel, local memory computing 
directions that dominate Fermilab’s high performance 
computing today: farms of RISC technology 
workstations for experiment triggering and 
reconstruction, and the ACPMAPS massively parallel 
computer that supports theoretical calculations. 
Likewise, early efforts in software tools which allow the 
scientist to focus on the problem not the architecture 
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have evolved into the modern packages CPS and 
Canopy which, respectively, are used in the contexts of 
networked farm systems and closely coupled massively 
parallel systems. 

RISC processor farms and CPS 

Today there are over 400 nodes in farms at Fermilab. 
A fxm is a collection of loosely coupled processors that 
we managed as a single system. The most recent 
Fermilab farms used in expcrimcnt event reconstruction 
consist of two commercial species of RISC workstation 
processor nodes: Silicon Graphics, Inc. (SGI) and IBM 
RS/6000. 

The processor farms 

The processors in a farm are connected over a 
communications network so they are able to exchange 
data, That can be VME, Ethernet, or whatever is 
practical. Most activity is now via TCP/IP. This allows 
all the computers to share data from a single set of tape 
and disk drives. The sharing of these peripheral devices 
and the fact that a farm works collectively on a single 
problem at a time distinguishes farms from mere 
collections of workstations. 

Each farm is composed of approximately 100 
processors, serving as worker nodes, tape sewer nodes, 
and as NFS server nodes. Each mns its vended version 
of a UNIX operating system, The CPUs are rack 
mounted in tiers and each has at least 12 MB memory, 
160 MB disk and Ethernet capability. See Table for 
other information. The farms are configured into 
“farmlets” of approximately 12 - 25 processors, and lhis 
subunit is on one Ethernet segment, separated by an 
Ethernet bridge or router. Each “farmlet” contains an 
NFS server, a tape server, and the balance are used as 
worker nodes. Local disk on each node has a copy of 
the operating system and paging space. The worker 
nodes all remote mount the Fermilab local executables 
from their “farmlet” NFS server, as well as scratch space 
areas for the batch jobs. Communication outside of the 
“fsrmlet” is generally limited to user logins and con- 
nections to the CPS Job Manager, which oversees the 
job. 



Farms at Fermilab 

IBM RS/6000 SGI, hx 

Worker nodes 
63 Model 320s 22 Model 4D25s 
36 Model 320Hs 78 Model 4D35s 

Setver nodes 
3 Model 530 3 Model 4D25s 
2 Model 320s 3 Model 4D310s 

Operating System 
AM 3.1.5 IRIX 3.3.2 

IRIX 3.3.3 

The software support 

The solware environment is layered. This approach 
utilizes the features of the UNIX operating system, and 
each farm implements its own vendor’s version of 
UNIX, Lying above that is the communications and 
networking layer. This contains TCP/IP and NFS at a 
minimum. Topmost is special software which has been 
written at Fermilab tc make it possible for scientists to 
use a farm effectively in a manner similar to that of a 
single large computer. Called “Cooperative Processes 
Software” (CPS), this software runs on a variety of 
computer platforms, and is designed to accommodate 
heterogeneous farms made up of different types of 
computers. 

CPS is a tools package which eases splitting a job 
across a set of processes. The processes may be 
distributed over a set of computers. From the standpoint 
of hardware the CPS environment is a set of networked 
UNIX workstations. However, this is not the way the 
scientist sees the CPS environment; the process oriented 
apphcations software environment the user encounters is 
a fully-connected group of processes, each having equal 
access to each other and peripheral devices. CPS 
supports general process interactions including: 

data transfers; send data to another process, and 
get data from another process. 

remote subroutine calls; a process calls a 
subroutine on another process. 

process queues and synchronization mechanisms; 
determine process availability for data or 
remote call, and coordination of transfers 
and calls. 

An attractive feature of CPS for many is that it can be 
used with or without explicit message passing. While 
message passing can be specified for interprocess 
communication, CPS organizes process execution by 
queuing and dequeuing from, for example, READY and 
DONE queues. The user may define his own set of 
queues. Message passing underlies this scheme, as well 

as the CPS subroutine calls, but it remains hidden from 
the user unless it is explicitly used. 

ImporIani CPS subroutines 

data transfers 
acp-declare-block 

declare array as possible source/destination of 
data transfer 

acp-send 
send data to a block in another process 

=cp-w 
get data from a block in another process 

synchronlzatlon and queues 
acp-declare-queue 

declare process eligible for a particular queue 
acp-q”e”egrccess 

place a process ID on a queue 
acp-dequeue>rccass 

remwe a process ID from a queue 
acp-wait-queue 

wait for a queue tc become full or empty 
=cp-SY “C 

wait for set of processes to all arrive at synch 
point 

remote subrouilne calls 
acp_declare-subroutine 

declare subroutine eligible to call from another 
PPXeSS 

acp-service-calls 
declare process to be a dedicated remote server 

acp-call 
call a subroutine in another process 

Program development with CPS begins by 
incorporating CPS subroutines into the application code 
using the tool kit of explicit parallelism directives One 
then compiles the program on target computer(s) and 
links the program on the target computer(s) with the 
CPS system library. Applications debugging is 
simplified because jobs operate identically under CPS 
on single or multiple computers. The job manager start 
the set of processes running, manages the interacrions 
between the processes, and shuts down the processes at 
the end of the job. 

CPS has a batch facility that supports production 
jobs. Users submit CPS jobs to UNIX batch queues, one 
queue for each processor Cam or production system, 
depending on how the complex is configured. The next 
job on the queue is started when a farm becomes free. 
The various phases in the Batch sequence - ondeck: 
copy; execution; and, ccpyback - are pipelined, allowing 
multiple jobs to be handled. CPS batch supports 
computer center operations with an operator console that 
displays tape mount requests and job status information. 

To date, the CPS software system has been ported to 
a large number of hardware platforms. Current imple- 
mentations at FNAL assume all proxsses from a job are 
executing on the same computer platform, running 
identical environments. However, the CPS primitives 



were originally designed to be platform independent, 
and thus offer the opportunity to manage distributed 
heterogeneous parallel processing. The current 
implementation of CPS (V2.5) can handle 
heterogeneous farms as has been demonstrated at a sister 
laboratory at another site. 

We are planning a project to integrate CPS with a 
second Fermilab software system, UNIX Product Support 
(UPS) to provide a consistent automatically uniform 
environment across the varied platforms of heterogeneous 
networked system. 

Creating consistent environments 

As it exists now, UPS manages software packages 
across a set of different computer platforms, but has no 
functionality for job execution. Its appeal is that it 
simplifies and organizes the task of using a variety of 
computing platforms to work on the same application. It 
handles the housekeeping associated with developing and 
using applications, especially over long periods of time, in 
multiple computing environments. 

UPS utilities provide uniform mechanisms for defining 
the versions of software to be used; user access to the 
required environmental variables and other parameters 
needed in order to use the software: distribution of 
selected software to remote computers: generation of the 
final application (files such as executables, data tiles etc - 
associated with rhe job to be run); provision of a platform 
independent process operating environment; census of the 
software installed on remote computers: archival and 
retrieval of old versions of software; etc. 

The UPS kernel supports multiple simple databases of 
lists of software programs with associated attributes of 
version, platform type, proprietary nature, and dependency 
of the software on other software packages. A single UPS 
data base can be used by multiple, different computers, or 
multiple data bases can be used on a single computer. UPS 
provides utilities for handling the information contained in 
these databases, and for managing the software so 
described. 

The extensions to CPS/UPS we plan would provide 
the framework to support the development, building, and 
execution of a multiprocess application where the 
functions to be performed are distributed among several 
different platforms of UNIX computers (IBM RS/6000, 
SGI, DEC5000 and Sparcstation 11s) and specified 
portions of the data to be processed are transferred 
between the processes. 

To support execution of the processes as a single job, 
the system must provide for distribution of the correct 
versions of the requisite files to the various computers; for 
the transparent transfer of data between platforms that 
may have different dataword byte ordering or floating 
point representations; for the coordinated startup, 
monitoring and stopping of the processes in a uniform 
manner across the different computer platforms; and for a 
uniform and centralized mechanism for the reporting of 

results at the application level. All the interprocess 
communication, synchronization, management and data 
transfer mechanisms must be computer hardware and 
software independent. 

For example, in the domain of HEP, the system we 
propose would allow experiment event data to bc read 
fmm I/O media on a Silicon Graphics, the core of the data 
processed on an IBM RSICtiOO. and the results of the 
physics analysis visualized on a Decstation 5000. To 
achieve this requires a system that allows the application 
developer to specify what source files are to be compiled 
and linked on which platform; what dependencies these 
compilations and links have on each other; and what data 
and configuration fdes are needed on which platform. The 
system will provide for the requisite files and their 
updated versions to be available on the specified computer 
at the appropriate time. It will maintain a history of the 
application generation for later checking as needed by the 
application user or maintainer. 

ACPMAPS: 
Massively parallel computer and Canopy 

Fermilab efforts to support theoretical computations in 
HEP led to the development of a massively parallel local 
memory computer that is ideally suited for the lattice 
gauge calculations of quantum chrcmodynamics, QCD, 
one of the biggest consumers of computer cycles 
nationwide. This highly parallel, cost effective computer 
is called the Advanced Computer Program Multi-Array 
Processor System, or ACPMAPS. 

ACPMAPS is a multiprocessor computer with 
hundreds of individual processor modules that can work in 
parallel on a single problem. It uses an innovative scheme 
for communication between its constituent processors. 
The connectivity can be thought of as similar to a modem 
telephone switching network, but at much higher speeds. 
Each processor module resides in one of the sixteen slot; 
of a Bus Switch Backplane (BSB) crossbar switch crate 
which takes on a role analogous to a local t&phone 
exchange. The BSB allows a processor in one BSB slot to 
make a point-to-point connection with a processor in any 
other BSB slot Once a connection has been established, 
the processor that initiated the connection can read and 
write the memory of the other processor at a rate of 20 
megabytes per second. The time to establish a connection 
is only a few micro-seconds. 

Up to eight pairs of processors may communicate 
simultaneously, thus providing an aggregate 
communication of 160 megabytes per second within the 
crate. An additional module, the Bus Switch Intcrfacc 
Board (BSIB), provides a mechanism for communicating 
between BSBs. A BSlB in one crate can be connected via 
twisted-pair cables to a BSIB in another crate. This 
provides a 20 megabyte per second link between the two 
BSB slots like a long distance call. The ACPMAPS 
computer makes extensive use of BSIB modules- 
approximately one half of all BSB slots are filled with 



BSIBs. This patented switch hardware allows systems to 
be interconnected in a large variety of ways with specific 
configurations optimized for the type of calculation to be 
performed. In the Fermilab installation. targeted at lattice 
gauge. the system is set up as 4 fully connected 3 x 3 
planes of crossbar crates. 

ACPMAPS also contains a highly parallel I/O 
subsystem. Approximately one half of the BSBs have one 
of their slots connected to a VME backplane in the same 
physical crate which in turn provides a connection to a 
SCSI bus. Each SCSI bus contains two 676 megabyte disk 
drives and two Exabyte 8mm tape drives (up to two 
gigabytes of storage per tape). 

ACPMAPS upgrade 

A new ACPMAPS processor module containing hvo 
40 MHz Intel 860 microprocessors.per board, has been 
designed and built to upgrade the ACPMAPS processing 
power. This processor is compatible with the same 
BSB/BSIB communications mechanism. The original 
processing modules are being removed and replaced by 
the new modules. The commitment not to interrupt 
ongoing production physics dictates a cautious pace for 
this replacement process. Existing physics applications 
programs (that had already been written for ACPMAPS) 
run on the new modules with no changes. The underlying 
C software required only minor adaptations for the new 
processor, and a library of optimized computational 
kernels is being ported to the i860 chip architecture. 
These software changes represent a moderate systems 
effort, and are invisible to the ACPMAPS user 
community. The upgraded ACPMAPS will have ten 
times the computing power of the original ACPMAPS- 
the ability to perform at a peak rate of 50 GFLOPS. 

Summary of upgrade 

Existing ACPMAPS Upgraded ACPMAPS 

Aggregate Performance 

5 GFLOPS (peak) 50 GFLOPS (peak) 
2,500 Mbytes memory 20,000 Mbytes memory 
22,CNl Mbytes disk space 22,CCO Mbytes disk space 
64,000 Mbytes of tape 64,ooO Mbytes of tape 

drive capacity drive capacity 

consiituent Parts 

256 processors 306 processors 
(Weitek XL.8032) (two i86Os each) 
36 BSB crates 36 BSB crates 
271 BSIBs 271 BSIBs 
32 disk drives 32 disk drives 
32 tape drives 32 tape. drives 

Canopy 

A powerful software environment is an important and 
innovative part of the ACPMAPS system: it is called 
Canopy. Canopy is designed to support computing for grid 
oriented problems that map onto a lattice, defined 
generally as a set of sites, each of which has defined 
directions to a set of neighboring sites. 

For example, a three dimensional grid is a lattice where 
the set of sites is the set of all points where the grid lines 
cross. The calculations performed by Fermilab and 
collaborating physicists make use of a four-dimensional 
space-time lattice to perform QCD calculations of the 
strong force. When running lattice gauge software under 
Canopy, ACPMAPS typically performs at the high level 
of about 30% of its peak GFLOPS rating. User 
programming is in C. with certain Canopy kernels and 
common computational kernels in assembler. The level of 
abstraction in Canopy remains high. The scientist uses 
subroutines to create a grid with known connectivity and 
to manipulate the fields that are situated on these grids. 
Then, by writing task routines to do operations on a site, 
the parallelism is automatically invoked. The user need 
not be aware of the specific machine details such as the 
number of nodes it has OT how the sites are distributed 
among the nodes. 

Summary 

Motivated by an ongoing need to have cost effcctivc 
computing, Fermilab has made some important conui- 
butions to distributed memory parallel computing in both 
hardware and software. By adopting the philosophy of 
incorporating technology at the highest commercially 
available level, these products will become even more 
robust. 


